Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A bstract We propose a unified perspective on two sets of objects that usually arise in the study of bipartite field theories. Each of the sets consists of a polytope, or equivalently a toric Calabi-Yau, and a quiver theory. We refer to the two sets of objects as original and twin. In the simplest cases, the two sides of the correspondence are connected by the graph operation known as untwisting. The democratic treatment that we advocate raises new questions regarding the connections between these objects, some of which we explore. With this motivation in mind, we establish a correspondence between the mutations of the original polytope and the twin quiver. This leads us to propose that non-toric twin quivers are naturally associated to generalized toric polygons (GTPs) and we explore various aspects of this idea. Supporting evidence includes global symmetries, the ability of twin quivers to encode the generalized s -rule, and the connection between the mutations of polytopes and of configurations of webs of 5-branes suspended from 7-branes. We introduce three methods for constructing twin quivers for GTPs. We also investigate the connection between twin quivers obtained using different toric phases. Twin quivers provide a powerful new perspective on GTPs. The ideas presented in this paper may represent a step towards the generalization of brane tilings to GTPs.more » « less
-
A<sc>bstract</sc> We investigate a class of mass deformations that connect pairs of 2d(0,2) gauge theories associated to different toric Calabi-Yau 4-folds. These deformations are generalizations to 2dof the well-known Klebanov-Witten deformation relating the 4dgauge theories for the ℂ2/ℤ2× ℂ orbifold and the conifold. We investigate various aspects of these deformations, including their connection to brane brick models and the relation between the change in the geometry and the pattern of symmetry breaking triggered by the deformation. We also explore how the volume of the Sasaki-Einstein 7-manifold at the base of the Calabi-Yau 4-fold varies under deformation, which leads us to conjecture that it quantifies the number of degrees of freedom of the gauge theory and its dependence on the RG scale.more » « less
-
A bstract The 2 d (0 , 2) supersymmetric gauge theories corresponding to the classes of Y p,k (ℂℙ 1 × ℂℙ 1 ) and Y p,k (ℂℙ 2 ) manifolds are identified. The complex cones over these Sasaki-Einstein 7-manifolds are non-compact toric Calabi-Yau 4-folds. These infinite families of geometries are the largest ones for Sasaki-Einstein 7-manifolds whose metrics, toric diagrams, and volume functions are known explicitly. This work therefore presents the largest list of 2 d (0 , 2) supersymmetric gauge theories corresponding to Calabi-Yau 4-folds with known metrics.more » « less
-
A bstract Reflexive polytopes in n dimensions have attracted much attention both in mathematics and theoretical physics due to their connection to Fano n -folds and mirror symmetry. This work focuses on the 18 regular reflexive polytopes corresponding to smooth Fano 3-folds. For the first time, we show that all 18 regular reflexive polytopes have corresponding 2 d (0 , 2) gauge theories realized by brane brick models. These 2 d gauge theories can be considered as the worldvolume theories of D1-branes probing the toric Calabi-Yau 4-singularities whose toric diagrams are given by the associated regular reflexive polytopes. The generators of the mesonic moduli space of the brane brick models are shown to form a lattice of generators due to the charges under the rank 3 mesonic flavor symmetry. It is shown that the lattice of generators is the exact polar dual reflexive polytope to the corresponding toric diagram of the brane brick model. This duality not only highlights the close relationship between the geometry and 2 d gauge theory, but also opens up pathways towards new discoveries in relation to reflexive polytopes and brane brick models.more » « less
-
null (Ed.)A bstract While the study of bordered (pseudo-)holomorphic curves with boundary on Lagrangian submanifolds has a long history, a similar problem that involves (special) Lagrangian submanifolds with boundary on complex surfaces appears to be largely overlooked in both physics and math literature. We relate this problem to geometry of coassociative submanifolds in G 2 holonomy spaces and to Spin(7) metrics on 8-manifolds with T 2 fibrations. As an application to physics, we propose a large class of brane models in type IIA string theory that generalize brane brick models on the one hand and 2d theories T [ M 4 ] on the other.more » « less
An official website of the United States government
